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Abstract. A bifurcation of codimension three where two travelling wave instabilities merge is
investigated. For this case the amplitude equation is derived in detail for a general system using a
multiple scale expansion. It contains non-local contributions. Complete solutions of this equation
and their asymptotic stability can be calculated analytically.

1. Introduction

In recent years much work has been done to understand pattern formation in spatially extended
systems [1–3]. One typically finds such codimension-one bifurcations as soft-mode, hard-
mode and travelling wave instabilities in a vast class of systems ranging from fluids and lasers to
magnets and chemical systems. A powerful method in dealing with these problems, especially
in spatially low-dimensional systems, is the description in terms of amplitude equations. They
provide an apt tool to analyse patterns above instabilities of a trivial solution and lead to
Ginzburg–Landau equations for the amplitude functions.

While knowledge of codimension-one instabilities is great, bifurcations of higher
codimension in spatially extended systems are less well understood. These usually appear
where coefficients of the Ginzburg–Landau equation become zero or where different
instabilities of the trivial solution occur simultaneously. One bifurcation of the first kind is
discussed in [4] where the cubic coefficient of the amplitude equation of a soft-mode instability
vanishes. One prominent example of the latter case is the Turing–Hopf bifurcation, where a
soft-mode and a hard-mode instability occur simultaneously. It has been shown that the
dynamics above threshold can be described by two coupled Ginzburg–Landau equations [5,6].
The solutions of this complicated system are often studied numerically.

An analogous codimension-two case is the intersection of two travelling wave lines. At
this point the spectrum of the linearized system shows two critical wavenumberskc,1, kc,2 6= 0
with non-vanishing frequencies. We have found such a situation in a one-dimensional damped
ferromagnet being driven by a propagating magnetic wave. The details of the magnetic system
are given in appendix A. Any variation of the physical parameters describing the system will
generally change the difference between the two wavenumbers involved, which indeed can even
become zero. In such a case which arises quite generically the two travelling wave instabilities
merge in a codimension-three bifurcation. The situation can be viewed either as a merging
of two travelling wave instabilities or as a degeneration of a travelling wave instability giving
rise to two bifurcation lines. Of course this codimension-three bifurcation is more difficult to
detect than the more usual soft-mode, hard-mode or travelling wave instabilities.
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Figure 1. Bifurcation diagram and real part of spectra.ρ1, ρ2 andρ3 are parameters of a general
system. Thick lines correspond to bifurcation lines in planesρ3 = const.

2. Bifurcation diagram and spectra

In this paragraph we consider a general spatially one-dimensional system and specify the
degeneracy that is required to obtain the case described above. Near the travelling wave
instability the spectrum of the linearized problem is expanded around the critical wavenumber
kc.

λk = σk + iωk = λkc + (k − kc)∂kλk|kc + (k − kc)2/2∂2
k λk|kc + · · · . (1)

In the non-degenerate case the maximum of the real partσk is quadratic and higher-order
terms in this expansion need not be considered. Now let the degeneracy be such that the real
part of the quadratic coefficient∂2

k λk|kc vanishes, resulting in a fourth-order maximum where
σk ∝ (k − kc)4.

The structure of the corresponding bifurcation surface, as well as the real part of the
spectrum of the linear system, are shown schematically in figure 1. Point (A) indicates the
degenerate travelling wave bifurcation in the parameter space of the general system.

In the vicinity of point (A) the quadratic coefficient of the Taylor expansion changes its
sign. If it is negative, there is only one maximum inσk corresponding to the single travelling
wave line in the upper part of the diagram. The real part of the spectrum for this case is sketched
in (B). For positive coefficients∂2

k λk|kc the quartic maxima at point (A) breaks up into two
quadratic maxima hence giving rise to two bifurcation lines for waves with different critical
wavenumberskc,1 andkc,2. The intersection of these two lines marks a point of codimension two
(C) where both instabilities occur simultaneously, similar to the Turing–Hopf† point. Usually
the two maxima inσk will be of different height. Then the more elevated one (D) causes the
primal instability in the system. The bifurcation connected with the lower maximum is less
interesting (E), since the trivial solution is already unstable with respect to wavenumbers near
the other maximum. A bifurcation line ends, when the lower maximum meets the minimum
in σk and becomes a saddle point (F). Note that in the vicinity of the degenerate bifurcation
the real part of the spectrum locally is a polynomial in(k − kc) of order four.

While in the meantime, pattern formation near a single travelling wave bifurcation line
has become a textbook example, the derivation of an amplitude equation near the degenerate

† In the magnetic model described in appendix A it indeed becomes a Turing–Hopf bifurcation provided the inversion
symmetry is restored, which happens for spatially homogeneous driving fields.
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travelling wave bifurcation turns out to be much less trivial. The reason for this is that the
frequenciesωk cannot be eliminated by a simple transformation, which could be achieved in
the non-degenerate case by changing to a comoving frame of reference. We have been led to
apply a non-standard technique in order to solve this problem.

3. General system and notation

In what follows we analyse the degenerate travelling wave instability for a quite general
spatially one-dimensional system with broken inversion symmetry†. The system is by
assumption autonomous and invariant to translations. Its spatial size isLand periodic boundary
conditions are used. The equation of motion for the vector field8, which measures the
deviation from some homogeneous equilibrium state, reads

∂t8 = L[8] + N [8] 8(x, t) : [0, L] × R⇒ Rn. (2)

The linear and nonlinear operatorsL andN depend on the set of external parametersr and
may contain derivatives of arbitrary order with respect tox. They are written as

L[8] =
∑
α

B
α
(r)∂αx 8 N [8] = N 2[8] + N 3[8] + · · · r = (ρ1, ρ2, ρ3, . . .)

N 2[8] =
∑
α,β

Cα,β(r){∂αx 8, ∂βx 8} N 3[8] =
∑
α,β,γ

Dα,β,γ (r){∂αx 8, ∂βx 8, ∂γx 8}.
(3)

In these formulae theB
α

are matrices, whereas the tensor functionsC and D can be
chosen to be symmetric in their arguments, i.e.Cα,β{u, v} = Cβ,α{v, u}, Dα,β,γ {u, v,w} =
Dα,γ,β{u,w, v}, etc. The eigenvalue problem ofL is solved in terms of Fourier modes:

λ
(ν)
k ϕ

(ν)

k
= L[ϕ(ν)

k
] ϕ(ν)

k
= u(ν)k eikx λ

(ν)
k = σ (ν)k + iω(ν)k

H⇒ λ
(ν)
k u

(ν)
k =

∑
α

B
α
(r)(ik)αu(ν)k =: L

k
u
(ν)
k .

(4)

The eigenvaluesλ(ν)k of the different branches are enumerated by the indexν. In this spectrum
there exists by assumption only one unstable mode labelled byνc, so that along the heavy
bifurcation lines in the corresponding region of parameter space (cf figure 1)σ

(νc)
k obeys

σ
(νc)
k |kc,rc = 0, ∂kσ

(νc)
k |kc,rc = 0. Now, as a consequence of the discussion in the previous

section, at point (A) an additional degeneration occurs, namely

∂2
k σ

(νc)
k |kc,rc = 0 ∂3

k σ
(νc)
k |kc,rc = 0. (5)

Nearkc, the imaginary part of the spectrumω(νc)k is an arbitrary function ofk. This means
that the frequencies in the equations of motion cannot be eliminated by a transformation to
some comoving frame of reference. As sketched in the picture above, we consider only non-
vanishing critical wavenumbers.

As our basic equations of motion are translational invariant they may be transformed into
equations for corresponding Fourier amplitudes via the decomposition

8(x, t) = 1√
L

∑
k,ν

8
(ν)
k (t)u

(ν)
k eikx (6)

† An inversion symmetric system would generally produce not one but two counterpropagating waves. Excluding
further degeneracies one finds non-local amplitude equations for this case, as was pointed out by Knobloch and de
Luca [7].
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Figure 2. Interval of active modes (bold segments).

which gives

∂t8
(ν)
k = λ(ν)k 8(ν)

k +
1√
L

∑
k1,ν1,k2,ν2

δk,k1+k2R
νν1ν2
kk1k2

8
(ν1)
k1
8
(ν2)
k2

+
1

L

∑
k1,ν1,k2,ν2,k3,ν3

δk,k1+k2+k3S
νν1ν2ν3
kk1k2k3

8
(ν1)
k1
8
(ν2)
k2
8
(ν3)
k3

+ · · · . (7)

The contributions of the nonlinear operatorN contain the left eigenvectorsv(ν)k of L
k
:

Rνν1ν2
k,k1k2
=
∑
α,β

(ik1)
α(ik2)

β(v
(ν)
k · Cα,β{u(ν1)

k1
, u

(ν2)
k2
})

Sνν1ν2ν3
kk1k2k3

=
∑
α,β,γ

(ik1)
α(ik2)

β(ik3)
γ (v

(ν)
k ·Dα,β,γ {u(ν1)

k1
, u

(ν2)
k2
, u

(ν3)
k3
}). (8)

Since we start from a system with finite, though very large lengthL, k is a discrete index. The
limit L→∞will be performed after the derivation of amplitude equations has been completed.
This is a physicist’s approach to the problem, where emphasis is not on mathematical rigour†.

4. Weakly nonlinear analysis

Equation (7) describes the dynamics of all Fourier modes in all branches, whether they are
damped or not. However, only a small fraction of them, namely the linearly unstable or ‘active’
modes [2] respectively, turn out to be constitutive or relevant for pattern formation. The linearly
stable modes are damped and, as a consequence, enslaved by the active ones [8]. They will
be eliminated adiabatically by applying a reduction scheme in analogy to the centre manifold
reductions for low-dimensional systems.

Figure 2 makes it obvious how to choose the active modes. They are determined by the
spectrum of the linear operatorL and lie symmetrically with respect to the origin in the two

intervals I± = (±kc −1/2,±kc +1/2). Their width is given by1 ∝ 4

√
|σ (νc)kc
|.

The elimination of the passive modes, which consist of all modesµ 6= νc and all modes
outside the interval I= I+ ∪ I− for ν = νc, respectively, is achieved by applying the Taylor
expansion

q /∈ I or µ 6= νc : 8(µ)
q =

1√
L

∑
k1,k2∈I

α
µ,νc,νc
q,k1,k2

8
(νc)
k1
8
(νc)
k2

+ O(8(νc)
k

3
). (9)

The coefficientsαµ,νc,νcq,k1,k2
which are unknown initially result by inserting this ‘ansatz’ into (7)

and comparing terms up to second order in the amplitudes8
(νc)
k :

α
µ,νc,νc
q,k1,k2

= − δk,k1+k2R
µνcνc
q k1 k2

λ
(µ)
q − λ(νc)k1

− λ(νc)k2

. (10)

† It seems that the limitL→∞ may be performed as usual by replacing1
L

∑
k → 1

(2π)1/2

∫
dk and Kronecker by

Dirac deltas.δk,k′ → δ(k − k′). This is at least true for the discussions in section 4 and appendix A.
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The dynamics of the active modes can now be written down explicitly up to third order. For
our purpose higher-order terms can be neglected.

∂t8
(νc)
k = λ(νc)k 8

(νc)
k +

1

L

∑
kj∈I

δk,k1+k2+k3Tkk1k2k38
(νc)
k1
8
(νc)
k2
(8

(νc)
k3
)∗ + O(84

k). (11)

Tkk1k2k3 = Sνcνcνcνckk1k2k3
− 2

∑
q /∈I,µ

Rνcνcµ

kk1q

δk,k1+q

λ
(µ)
q − (λ(νc)k2

+ λ(νc)k3
)
Rµνcνc
qk2k3

. (12)

Note that because1 is much less thankc/3 quadratic terms do not appear in equation (11)
because of the conservation of momentum. To study the system of equations (11) near threshold
wherer − rc = O(ε2), the method of multiple scales is applied. Expanding the spectrum in a
Taylor series

λ
(νc)
k = i(ω(νc)kc,rc

+ (k − kc)∂kω(νc)k |kc,rc + 1
2(k − kc)2∂2

k ω
(νc)
k |kc,rc + 1

6(k − kc)3∂3
k ω

(νc)
k |kc,rc )

+
1

4!
(k − kc)4∂4

k λ
(νc)
k |kc,rc + (r − rc)∂rλ(νc)k |kc,rc + · · · (13)

leads to supposing that O((k − kc)4) = O(r − rc). Therefore the width1 of the interval
is O(
√
ε). Consequently the possible timescales of the oscillations of the Fourier modes

are t,
√
εt, εt, etc. Since the system is invariant with respect to translations we can avoid

dealing with the fastest oscillations by choosing an appropriate frame of reference. The
transformation†:

9k = 8(νc)
k ei(ωc+(k−kc)∂kωk |kc )t (14)

eliminates the first two terms in the RHS of (13), but leaves equation (11) otherwise unchanged.
A systematic treatment will be accomplished by putting

r = rc + ε2r2 (k − kc) = O(
√
ε) tn = εnt

9k = εψ(1)
k + ε

√
εψ

(3/2)
k + ε2ψ

(2)
k + ε2√εψ(5/2)

k + · · ·
∂t = ∂t0 +

√
ε∂t1/2 + · · · ψ

(i)
k = ψ(i)

k (t0, t1/2, t1, . . .).

(15)

Insertion of (15) into (11) and requiring that the resulting system of equations is satisfied
in all orders ofε yields the following hierarchy of linear inhomogeneous differential equations
for theψ(i)

k :

[εm/2] :
m−2∑
n=0

∂tn/2ψ
(m−n2 )

k = i
m−2∑
n=0

�
(n/2)
k ψ

( m−n2 )

k m ∈ {2, 3, 4, 5}

[ε3] :
4∑
n=0

∂tn/2ψ
(3− n

2 )

k = i
4∑
n=0

�
(n/2)
k ψ

(3− n
2 )

k +µψ(1)
k + αkψ

(1)
k

+
γ

L

∑
k1,k2,k3∈I+

δk,k1+k2−k3ψ
(1)
k1
ψ
(1)
k2
ψ
(1)
k3

∗
.

(16)

In writing equations (16) the following abbreviations have been used.

�
(0)
k = �(1/2)k = 0 �

(n/2)
k = 1

n!
∂nk ω

(νc)
k |kc,rc k̂n n ∈ {2, 3} k̂ = k − kc√

ε

µ = r2 · ∂rλ(νc)k |kc,rc αk = 1

4!
∂4
k λ

(νc)
k |kc,rc k̂4 γ = 2Tkkk−k + Tk−kkk|kc,rc .

(17)

We now have to check under what conditions the hierarchy (16) has bounded solutions for any
m. Up to orderε5/2 this is fairly simple. Form = 2 equation (16) reads∂t0ψ

(1)
k = 0, which

leads to the conclusion thatψ(1)
k = ψ(1)

k (t1/2, t1, . . .) is not dependent on timet0.

† We drop the indexνc for brevity. It was the only upper index in (11).
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Using this result the equation form = 3 is a linear inhomogeneous differential equation
for ψ(3/2)

k in the variablet0, where the inhomogeneity, i.e.∂t1/2ψ
(1)
k is independent oft0. Then,

in order to avoid secular solutions the condition∂t1/2ψ
(1)
k = 0 has to be fulfilled. This gives

ψ
(1)
k = ψ(1)

k (t1, . . .) and alsoψ(3/2)
k = ψ(3/2)

k (t1/2, t1, . . .).
This argument is applied twice for the variablest0 and t1/2 in the casem = 4

and produces the secular condition∂t1ψ
(1)
k = i�(1)k ψ

(1)
k . Hence we getψ(1)

k =
η
(1)
k (t3/2, t2, . . .)e

i�(1)k t1 as well as the additional result thatψ(3/2)
k andψ(2)

k do not depend on
t0 andt1/2 respectively. Repeating this type of argument over and over again form = 5 one
obtains solutions up to orderε5/2:

ψ
(1)
k = ξ (1)k (t2, . . .)e

i�(1)k t1ei�(3/2)k t3/2 ψ
(3/2)
k = η(3/2)k (t3/2, t2, . . .)e

i�(1)k t1

ψ
(2)
k = ψ(2)

k (t1, t3/2, t2, . . .) ψ
(5/2)
k = ψ(5/2)

k (t1/2, t1, t3/2, t2, . . .).
(18)

We have not yet arrived at equations for the amplitudes which ensure saturation of the unstable
modesψk. This is achieved in O(ε3). The secular condition on the timescalet1 reads

(∂t1 − i�(1)k )ψ
(2)
k = −(∂t3/2 − i�(3/2)k )η

(3/2)
k ei�(1)k t1 − (∂t2 − µ− αk)ξ (1)k ei�(1)k t1+i�(3/2)k t3/2

+
γ

L

∑
k1,k2,k3∈I+

δk,k1+k2−k3ξ
(1)
k1
ξ
(1)
k2
ξ
(1)
k3

∗
ei(�(1)k1 +�(1)k2−�

(1)
k3
)t1+i(�(3/2)k1

+�(3/2)k2
−�(3/2)k3

)t3/2. (19)

In order to avoid resonances with frequency�(1)k all terms which obeyk2 = k2
1 + k2

2 − k2
3

—remember that�(1)k is quadratic ink − kc—have to be extracted from the triple sum on the
RHS of equation (19) and after combining them with the remaining terms on the RHS put
equal to zero. This yields

(∂t3/2 − i�(3/2)k )η
(3/2)
k = −(∂t2 − µ− αk)ξ (1)k ei�(3/2)k t3/2

+
γ

L

∑
k1,k2,k3∈I+

δk,k1+k2−k3δk2,k2
1+k2

2−k2
3
ξ
(1)
k1
ξ
(1)
k2
ξ
(1)
k3

∗
ei(�(3/2)k1

+�(3/2)k2
−�(3/2)k3

)t3/2. (20)

Now the conditionsk = k1 + k2− k3 andk2 = k2
1 + k2

2 − k2
3 can only be fulfilled by choosing

k = k1, k2 = k3 ork = k2, k1 = k3. Therefore only pairs(k,−k) contribute to the dynamics of
ψk above threshold. The same reasoning—there ought to be no terms proportional to ei�(3/2)k t3/2

on the RHS of equation (20)—leads to us requiring

∂t2ψ
(1)
k = µψ(1)

k + αkψ
(1)
k + 2γ

(
1

L

∑
k′∈I+

|ψ(1)
k′ |2

)
ψ
(1)
k (21)

where we went back fromξ (1)k toψ(1)
k using equation (18). We remark that the fact that the sum

on the RHS of equation (20) is restricted to pairs entails that it altogether contains only resonant
contributions with respect tot3/2. Equation (21) describes the saturation of the unstable modes
which was sought for. Unlike the corresponding saturation term in the amplitude equation for
the non-degenerate travelling wave instability, it is non-local in ordinary space. The source
of this non-locality is very different from the one in the paper of Knobloch and de Luca [7],
where the non-local character stems from the two different local coordinate systems for the
counterpropagating waves. In a frame of reference moving with one of them, the other one
shows up as an averaged quantity.

Due to the lack of inversion symmetry in the system analysed here there is only one wave
offering a definite pertinent frame of reference. It is the oscillation of the Fourier modes with
frequencies�(1)k ∝ (k − kc)2 on timescales which are smaller than the scalet2 on which
saturation occurs, which generates the non-locality in our case. The secularity condition being



Analysis of a degenerate travelling wave instability 485

caused by these oscillations yields the constraintk2 = k2
1 + k2

2 − k2
3. This condition together

with k = k1 + k2− k3, i.e. the conservation of momentum, reduces the triple sum of nonlinear
terms to a simple sum, thereby generating the final non-local result equation (21).

It is important to observe that it is the imaginary part of the spectrum which produces these
oscillations on the timescalet1 above threshold. They cannot be eliminated from the problem
but, as has been shown, may be taken into account properly by applying an appropriate version
of the method of multiple scales.

If, on the other hand, the imaginary part additionally obeys∂2
k ωkc |rc = ∂3

k ωkc |rc = 0 the
second Kronecker-delta in (20) does not arise and there is no dynamics on the corresponding
timescales. Hence there is no non-local contribution to the amplitude equation. Except for a
fourth-order derivative the resulting amplitude equation resembles the usual Ginzburg–Landau
equation in ordinary space. It should be mentioned that all these peculiarities disappear in the
non-degenerate case.

Since the degenerate travelling wave instability is represented by a single point in the
three-dimensional space of bifurcation parameters (cf figure 1) it will be difficult to attain in
numerical simulations. In most cases one will be in some finite though small distance to it. It
is therefore desirable to enlarge the validity of (21) to a neighbourhood of the codimension-
three point. This will be achieved by discussing a rather general unfolding of the degenerate
bifurcation. The corresponding calculations are deferred to appendix B. They lead to the result

∂t2ψ
(1)
k =

(
µ + α2

(
k − kc√

ε

)2

+ α3

(
k − kc√

ε

)3

+ α4

(
k − kc√

ε

)4

+
2γ

L

∑
k′∈I+

|ψ(1)
k′ |2

)
ψ
(1)
k .

(22)

The linear terms on the RHS of equation (22) contain additional quadratic and cubic
contributions. The coefficientsα2 and α3 are complex quantities which play the role of
unfolding parameters. They vanish at the codimension-three bifurcation.

5. Solutions above threshold and their asymptotic behaviour

Due to the fact that the coupling terms in equation (22) affect only pairs of modes a rather
complete discussion may be given as regards the existence of solutions, their asymptotic
behaviour and their stability. It is sufficient to consider only real parametersµ, αi, γ , because
the time dependent transformation

ψ
(1)
k → ψ

(1)
k exp

{
− i

(
Im {p(k)}t2 + 2Im {γ }

∫ t2

0
B(τ)dτ

)}
wherep(k) andB(t2) are defined by

B(t2) = 1

L

∑
k′∈I+

|ψ(1)
k′ |2 p(k) = µ + α2

(
k − kc√

ε

)2

+ α3

(
k − kc√

ε

)3

+ α4

(
k − kc√

ε

)4

removes all the imaginary parts of these coefficients. The polynomialp(k) expresses the form
of the spectrum in the interval of active modes and consequently shows one maximum, a saddle
point or two maxima depending on the specific values ofα2 andα3 (cf figure 1). Since the
nonlinearity is essentially made up of thek-independent functionB(t2), direct integration gives

ψ
(1)
k (t2) = ψ(1)

k (0) · ep(k)t2 · e2γ
∫ t2

0 B(τ) dτ . (23)

B has to be determined self-consistently from

− 1

4γ
∂t2(e

−4γ
∫ t2

0 B(τ) dτ ) = 1

L

∑
k′∈I+

|ψ(1)
k′ (0)|2e2p(k′)t2 =: g(t2) (24)
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where the functiong is a known function oft2 for any given initial conditionψ(1)
k (0). Integration

of (24) yields immediately

ψ
(1)
k (t2) = ψ(1)

k (0) · ep(k) t2 ·
(

1− 4γ
∫ t2

0
g(τ) dτ

)− 1
2

. (25)

We have thus obtained an analytical though somewhat formal solution of equation (22). It
contains hitherto all sorts of solutions, stable and unstable as well as bounded and unbounded
ones. In order to exclude unbounded solutions one has to demand thatγ < 0. Furthermore,
as all modes withp(k) 6 0 will die out, attention has to be focused on the linearly unstable
modes which are characterized byp(k) > 0.

We will prove in appendix C that any solution will run asymptotically—in fact irrespective
of the initial conditions—into a definite single plane wave state. A rough argument explaining
the emergence of such a simple stable space and time periodic final pattern is as follows:
consider the squared Fourier modes†:

|ψ(1)
k (t2)|2 = |ψ(1)

k (0)|2 · e2p(k)t2 ·
(

1− 4γ
∫ t2

0
g(τ) dτ

)−1

= |ψ(1)
k (0)|2 · e2p(k)t2

1− 4γ
L

∑
k′
|ψ(1)
k′ (0)|2

2p(k′) (e
2p(k′)t2 − 1)

. (26)

The most important contribution in the denominator stems from the fastest growing mode with
wavenumberkM ∈ I+. This need not, but can bekc. Extracting it from the sum we write:

|ψ(1)
k (t2)|2 = |ψ(1)

k (0)|2 · e2p(kM)t2

1− 4γ
L

|ψ(1)kM (0)|2
2p(kM)

(e2p(k′)t2 − 1)− 4γ
L

∑
kM 6=k′

|ψ(1)
k′ (0)|2

2p(k′) (e
2p(k′)t2 − 1)

.

The denominator will cause all Fourier modes withk 6= kM to vanish ast2 → ∞. The
only non-vanishing mode is the fastest growing one, in which case the numerator balances the
denominator. Disregarding all the other modes, i.e. the sum fort2→∞ we are left with

|ψ(1)
k (t2)|2→−p(kM)

2γ
Lδk,kM . (27)

The more careful analysis in appendix C leads to

|ψ(1)(k, t2)|2→−p(kM)
γ

πδ(k − kM)
which is in full agreement with this conclusion.

To test these results numerically we perform a simple simulation of equation (22) for
the ferromagnetic model which is presented in appendix A. The parametersγ = 0.289 17,
δ = −2.429 12,κ = 1.117 which are defined there, are chosen to be slightly above the
codimension-three instability, which is located atγ = 0.289 19,δ = −2.429 23,κ = 1.117 08.
0 = 0.1, j = 1, h0 = 0.5, a = 2.247 78 are held fixed. The real part of the spectrum then
takes the form shown in figure 3.

The critical wavenumber iskc = 1.166 27. Within certain limits the width of the interval
I+ used in the derivation of the amplitude equation may be chosen arbitrarily. From the above
picture one sees that1 = 0.04 is an apt choice. The Taylor-expansion of the spectrum yields
the coefficients ofp(k): µ = 6.0×10−10, α2 = 5.0×10−5, α3 = 4.17×10−3, α4 = −4.331.
Note that the simulations make no use of the formal smallness parameterε. The coefficient
of the nonlinear term in (22) is given by (17) and turns out to be 2γ = −6.558× 10−2. The

† In these equations we assumek′ ∈ I+, but omit the explicit notation at the sums.
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Figure 3. Real part of spectrum forh0 = 0.5, 0 = 0.1, j = 1.

(a)

(b)

Figure 4. Simulations forh0 = 0.5, 0 = 0.1, j = 1. (a) Shows the evolution of Fourier modes
on a short timescale. (b) Exhibits the long time behaviour.

simulation uses 1024 wavenumbers in I+ and a homogeneous initial condition on which white
noise is superimposed.

Figure 4 shows that all modes with negative values ofσk die out very fast during the
first integration steps. On the other hand the linearly unstable modes grow on an intermediate
timescale in a way that is dominated by the form of the spectrumσk. On a larger scale, however,
nearly all of these modes begin to decrease. Asymptotically only the linearly most unstable
mode survives. The final peak is found atk = 1.16 913. The square of the modulus of this
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mode is 2.0044× 10−3 which is in good agreement with the value 2.0046× 10−3 given by
equation (27).

6. Summary

Motivated by a study of a damped and driven one-dimensional ferromagnet we were led to
analyse a degenerate travelling wave instability in non-inversion symmetric one-dimensional
systems quite generally. A weakly nonlinear analysis above threshold using a non-standard
version of the method of multiple scales leads to amplitude equations for the spatial Fourier
modes. Their striking feature is that there is only a nonlinear coupling between pairs of modes
which are located symmetrically with respect to the origin. This fact simplifies the treatment
of the equations considerably. A complete solution could be obtained. A discussion of its
asymptotic behaviour showed that the most unstable wavenumbers dominate the dynamics of
the system. In the end a long time equilibrium state being just a single plane wave is reached.
This result agrees fully with numerical simulations.
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Appendix A. Ferromagnetic model system

On a macroscopic scale the equation of motion of the classical density of magnetizationEM(Er, t)
of a ferromagnet is given by the Landau–Lifshitz equation.

∂t EM(Er, t) = − EM(Er, t)× ( EHeff (Er,t) + 0 EM(Er, t)× EHeff (Er, t)). (A.1)

The first term gives rise to a precession ofEM around the local effective magnetic fieldEHeff ,
while the second—dissipative—term tends to align the local magnetic moment parallel to that
field. This equation was proposed by Landau [9] phenomenologically, but was also derived
from the underlying microscopic equations by Garanin and Plefka later on [10]. The modulus
of the magnetization is a constant of the motion which may be set equal to 1.

In most cases the treatment of spatially three-dimensional phenomena is hopelessly
complicated and beyond the scope of this article. We restrict ourselves to an investigation
of an one-dimensional model. This case is realized either in ferromagnets with only one large
aspect ratio coordinate or in systems where the magnetization is nearly homogeneous in a
plane but varies in a direction perpendicular to it. In such a case the dipolar fields can be
incorporated in an effective anisotropy. The effective magnetic fieldEHeff is then composed of
external static and driving fields, as well as internal isotropic exchange and uniaxial anisotropy
fields:

EHeff (Er, t) = hzEez + ho(cosθ Eex + sinθ Eey) + j∇2 EM + aMzEez θ = ωt + κz. (A.2)

The driving field is a magnetic wave which is assumed to be circularly polarized and
perpendicular to the static field. The running wave distinguishes a certain direction in
the system, which is chosen to be thez-axis. Pattern formation along this direction is
analysed. Spatially homogeneous driving fields were studied by Matthäus and Sauermann [5].
Performing the transformationEm = Rz(θ) EM whereRz is the rotation matrix with respect to
thez-axis the explicit dependence on space and time coordinates is eliminated and one obtains
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Figure A1. Bifurcation diagrams forh0 = 0.5,0 = 0.1, j = a − κ2 = 1. s: soft mode, h: hard
mode, tw: travelling wave, sn: saddle node line, th: Turing–Hopf point.

an autonomous partial differential equation forEm. Applying the stereographic projection,
φ = mx+imy

1+mz
which takes care of the conservation of the modulus ofEm automatically the

equation of motion becomes

∂tφ = (i − 0)
[
(δ + iγ )φ − h0

2
(1− φ2) + j

(
2φ∗(∂zφ)2

1 + |φ|2 − ∂
2
z φ

)
+
(
(a + jκ2)φ − 2ijκ∂zφ

) · 1− |φ|2
1 + |φ|2

]
. (A.3)

The parametersγ = 0 ω
1+02 and δ = hz − ω

1+02 denote a renormalized frequency and the
detuning from resonance respectively. The fact that the inversion symmetryz→−z is broken
for κ 6= 0 prevents the emergence of counterpropagating waves. Equation (A.3) permits either
two or four stationary, spatially homogeneous solutionsφ0. The corresponding regions in the
γ–δ-plane are separated by saddle node bifurcation lines. For the special case of a spatially
homogeneous driving field, i.e.κ = 0, a situation which has been studied in detail in [5], there
are other instabilities: soft- and hard-mode or Hopf bifurcations, respectively. They intersect
at a Turing–Hopf point (cf figure A1). The box in the upper left corner makes evident that the
soft-mode line does not meet the saddle-node line in the cusp point. In the upper part of this
diagram the system has one stable and one unstable solutionφ0. Inside the saddle-node lines
it has four stationary homogeneous solutions. We note that these solutions are independent of
κ. So the saddle-node lines are not affected by changing this parameter.

For finite κ (cf figure A1), the soft- and hard-mode lines change their character: they
become travelling wave instabilities whose frequencyωc and wavenumberkc vary along the
bifurcation lines. A new feature is that they have definite end points. These points approach
each other with increasingκ until they merge forκ = 1.117 08. . . (cf figure A1 and its
magnified insert). This is exactly the degenerated situation discussed in this article. Separating
real and imaginary parts in (A.3) and subtractingφ0 yields an equation of motion of the general
type (2). We add that the parametersρ1, ρ2, ρ3 of the schematic bifurcation diagram of section 1
correspond toδ, γ, κ in this example.

Appendix B. Unfolding

In this section the concept of unfolding a bifurcation is applied to the degenerate travelling
wave instability along the lines of [11]. The real part of the spectrumσ (νc)k of the linearized
problem is proportional to(k − kc)4 at the codimension-three point. In the neighbourhood of
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this point the quartic maximum breaks up in two quadratic maxima. One or both of them may
be positive, zero or negative (see figure 1 which illustrates several special cases). In order to
understand this complicated situation comprehensively we admit infinitesimal but otherwise
arbitrary perturbations in the parameters of the system. In terms of the smallness parameterε

they are written as

r = rc +
√
εr1/2 + εr1 + ε

√
εr3/2 + ε2r2 + · · · . (B.1)

Although the structure of equation (16) is not changed when applying the procedure outlined
in section 3 the coefficients�(j)k acquire many additional terms. However, unlike in equation
(17) the coefficients are nota priori real. Using the notationrl = |rl| andrl∂el = (rl · ∂r)
where∂r denotes the gradient andl ∈ { 12, 1, 3

2, 2} they can be written in the following way†:

�
(1/2)
k = −ir1/2∂e1/2λc k̂ = (k − kc)/

√
ε

�
(1)
k = 1

2 k̂
2∂2
k ωc − ik̂r1/2∂e1/2∂kλc − ir1∂e1λc −

i

2
r2

1/2∂
2
e1/2
λc

�
(3/2)
k = 1

6 k̂
3 ∂3

k λc + 1
2 k̂

2r1/2∂e1/2∂
2
k λc + 1

2 k̂r
2
1/2∂

2
e1/2
∂qλc

+k̂r1∂e1∂qλc + 1
6r

3
1/2∂

3
e1/2
λc + r1r1/2∂e1∂e1/2λc + r3/2∂e3/2λc

µ + αk = 1

4!
k̂4∂4

qλc + 1
6 k̂

3r1/2∂e1/2∂
3
qλc + 1

4 k̂
2r2

1/2∂
2
e1/2
∂2
qλc + 1

2 k̂
2r1∂e1∂

2
qλc

+1
6 k̂r

3
1/2∂

3
e1/2
∂qλc + k̂r1r1/2∂e1∂e1/2∂qλc + k̂r3/2 ∂e3/2∂qλc +

1

4!
r4

1/2∂
4
e1/2
λc

+1
2r

2
1/2∂e1∂

2
e1/2
λc + 1

2r
2
1∂

2
e1
λc + r3/2r1/2∂e3/2∂e1/2λc + r2∂e2λc.

(B.2)

One establishes that the perturbation theoretical treatment described after equation (17) remains
basically unchanged. The differences that arise stem from the fact that the�

(j)

k are now
complex quantities. As a consequence certain conditions will have to be fulfilled in order that
the solutions of equations (16) retain their oscillatory behaviour. Otherwise the solutions would
die out or increase exponentially in time. These conditions lead to restrictions on the possible
directions of the vectorsrl . First of all the vectorr1/2 must be tangent to the bifurcation
surface, since the real part of the linearized spectrum is zero anywhere on the bifurcation
surface. Consequently(r1/2∂e1/2)

nλc is purely imaginary for anyn and so

ψ
(1)
k = ζ (1)k ei�(1/2)k t1/2 ψ

(3/2)
k = ψ(3/2)

k (t1/2, t1, . . .). (B.3)

By the same token the terms(r1/2∂e1/2)
n∂kλc are also purely imaginary since the instability

conditions also require the real part of∂kλc to be zero on that surface.
Therefore all terms in�(1)k exceptr1∂e1λc are real. To avoid imaginary parts altogetherr1

also has to be tangent to the bifurcation surface.r1 andr1/2 are linearly independent vectors
which may be chosen to be perpendicular to each other. This gives up to orderm = 4.

ψ
(2)
k = ψ(2)

k (t1/2, t1, . . .) ψ
(3/2)
k = ζ (3/2)k ei�(1/2)k t1/2 ζ

(1)
k = η(1)k ei�(1)k t1. (B.4)

Analogous considerations apply form = 5. It turns out thatr3/2 must also lie in the bifurcation
surface. But since the tangent plane of the bifurcation surface is two-dimensional it may be
written as a linear combination ofr1 and r1/2 and thus does not produce independent new
contributions. In the same order an additional condition on the direction ofr1/2 arises. It
must be a tangent vector to another surface, which is defined by∂2

k σk|c = 0. We therefore
conclude that the direction ofr1/2 is fixed completely. Note that∂e1/2∂e1λ is purely imaginary

† The subscriptc in�c replaces the lengthier form�(νc)k |kc,rc in these equations.
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since bothr1/2 andr1 are tangent to the bifurcation surface. As in equation (20) only terms
with k2 = k2

1 + k2
2 − k2

3 enter the secular condition. Therefore,

ψ
(5/2)
k = ψ(5/2)

k (t1/2, t1, . . .) ψ
(2)
k = ζ (2)k ei�(1/2)k t1/2

ζ
(3/2)
k = η(3/2)k ei�(1)k t1 η

(1)
k = ξ (1)k ei�(3/2)k (k)t3/2.

(B.5)

With these choices ofr1/2, r1, r3/2, all frequencies�(j)k are real. Following the line of reasoning

that led from (20) to (21) one gets an equation for the dynamics ofζ
(1)
k whose nonlinear part

contains only contributions of pairs of modes:

(∂t2 − iα1k̂)ξ
(1)
k = µξ(1)k + α2k̂

2ξ
(1)
k + α3k̂

3ξ
(1)
k + α4k̂

4ξ
(1)
k +

2γ

L

(∑
k′∈I+

|ξkk′|2
)
ξ
(1)
k . (B.6)

The coefficients are defined by

µ = 1

4!
r4

1/2∂
4
e1/2
λc + 1

2r1r
2
1/2∂e1∂

2
e1/2
λc + 1

2r
2
1∂

2
e1
λc + r3/2r1∂e3/2∂e1λc + r2∂e2λc

α1 = 1
6r

3
1/2∂

3
e1/2
∂kωc + r1r1/2∂e1∂e1/2∂kωc + r3/2∂e3/2∂kωc α4 = 1

4!
∂4
k λc

α2 = 1
4r

2
1/2∂

2
e1/2
∂2
k λc + 1

2r1∂e1∂
2
k λc α3 = 1

6r1/2∂e1/2∂
3
k λc.

(B.7)

Obviously a Galilei-transformation helps to get rid ofα1. For r1/2 = r1 = r3/2 = 0 the
coefficientsα1, α2, α3 vanish. The unfolded version of (21) is thus:

∂t2ψ
(1)
k =

(
µ + α2

(
k − kc√

ε

)2

+ α3

(
k − kc√

ε

)3

+ α4

(
k − kc√

ε

)4

+
2γ

L

∑
k′∈I+

|ψ(1)
k′ |2

)
ψ
(1)
k . (B.8)

Appendix C. Asymptotic expansion ofg(τ ) for L→∞

It is evident from equation (26), that the asymptotic values of theψ
(1)
k will be determined

by a balancing argument which decides whether the numerator, i.e. exp(2p(k)t2) or the
denominator, i.e.

∫ t2
0 g(τ) dτ grows faster. ForL → ∞ the sum overk in the definition

of g(t), equation (24) is replaced by an integral. Carrying out the time integration one finds∫ t2

0
g(τ) dτ =

∫ t2

0

1

L

∑
k∈I+

|ψ(1)
k (0)|2e2p(k)τ dτ

= 1

2π

∫
I+

|ψ(1)(k, 0)|2
2p(k)

(e2p(k) t2 − 1) dk. (C.1)

For t2 → ∞ only the unstable modes survive. Neglecting the summand−1 and assuming
thatα3 6= 0, so thatp(k) has only a single maximum†kM , we expandp(k) in a Taylor series
aroundkM . We arrive at∫ t2

0
g(τ) dτ = e2p(kM)t2

2π

∫ co

−cu

|ψ(1)(kM + ξ/
√
β2t2, 0)|2

2p(kM + ξ/
√
β2t2)

eβ3
ξ3√
t2
−β4

ξ4

t2 e−ξ
2 dξ√
β2t2

(C.2)

where we have introduced a new variableξ = (k − kM)
√
β2t2 as well as the abbreviations

cu = (kM − kc +1/2)
√
β2t2 co = (kc − kM +1/2)

√
β2t2

β2 = |∂2
k p(kM)| β3 = ∂3

k p(kM)

3
√
β2

3 β4 = ∂4
k p(kM)

12β2
2

.
(C.3)

† The caseα3 = 0 is similar, but one has to deal with the two most unstable modes. This only produces more terms
to consider but all arguments remain essentially unchanged.
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Fort2→∞ this integral whose integrand is the product of a very slowly varying function with
a Gaussian may be extended from−∞ to∞. Now the asymptotic expansion of the integral is
performed by expanding the slowly varying part in a Taylor series atξ = 0 and an integration
by parts: ∫ t2

0
g(τ) dτ = 1

2π

e2p(kM)t2
√
β2t2

( |ψ(1)(kM, 0)|2√π
2p(kM)

+ O(1/
√
t2)

)
. (C.4)

Inserting this result into equation (26) yields

|ψ(1)(k, t2)|2 = |ψ(1)(k, 0)|2e2p(k)t2

(
−4γ

1

2π

e2p(kM)t2
√
β2t2

|ψ(1)(kM, 0)|2√π
2p(kM)

)−1

= −p(kM)π
γ

|ψ(1)(k, 0)|2
|ψ(1)(kM, 0)|2

√
β2t2

π
e2(p(k)−p(kM))t2 (C.5)

where again the summand−1 as well as terms of O(1/
√
t) were neglected. As the two last

factors tend to the Dirac delta function, we get the result quoted in section 4.

|ψ(1)(k, t2→∞)|2 = −p(kM)
γ

πδ(k − kM). (C.6)
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